ANNEX Q: Constants, Units, and Conversions

Metric Prefixes

Although most activity data for the U.S. is gathered in customary U.S. units, these units are converted into metric units per international reporting guidelines. The following table provides a guide for determining the magnitude of metric units.

Table Q-1: Guide to Metric Unit Prefixes

Prefix/Symbol	Factor
atto (a)	10^{-18}
femto (f)	10^{-15}
pico (p)	10^{-12}
nano (n)	10^{-9}
micro (µ)	10^{-6}
milli (m)	10^{-3}
centi (c)	10^{-2}
deci (d)	10^{-1}
deca (da)	10
hecto (h)	10^{2}
kilo (k)	10^{3}
mega (M)	10^{6}
giga (G)	10^{9}
tera (T)	10^{12}
peta (P)	10^{15}
exa (E)	10^{18}

Unit Conversions

```
1 kilogram = 2.205 pounds

1 pound = 0.454 kilograms

1 short ton = 2,000 pounds = 0.9072 metric tons

1 metric ton = 1,000 kilograms = 1.1023 short tons
```

1 cubic meter = 35.315 cubic feet 1 cubic foot = 0.02832 cubic meters 1 U.S. gallon = 3.785412 liters 1 barrel (bbl) = 0.159 cubic meters 1 barrel (bbl) = 42 U.S. gallons 1 liter = 0.1 cubic meters

1 foot = 0.3048 meters 1 meter = 3.28 feet 1 mile = 1.609 kilometers 1 kilometer = 0.622 miles

1 acre = 43,560 square feet = 0.4047 hectares = 4,047 square meters

1 square mile = 2.589988 square kilometers

To convert degrees Fahrenheit to degrees Celsius, subtract 32 and multiply by 5/9 To convert degrees Celsius to Kelvin, add 273.15 to the number of Celsius degrees

Density Conversions¹

Methane 1 cubic meter = 0.67606 kilograms Carbon dioxide 1 cubic meter = 1.85387 kilograms

Natural gas liquids 1 metric ton =11.6 barrels = 1,844.2 liters Unfinished oils 1 metric ton =7.46 barrels =1,186.04 liters Alcohol 1 metric ton = 7.94 barrels =1,262.36 liters Liquefied petroleum gas 1 metric ton = 11.6 barrels = 1.844.2 liters Aviation gasoline 1 metric ton = 8.9 barrels =1,415.0 liters Naphtha jet fuel 1 metric ton = 8.27 barrels =1,314.82 liters Kerosene jet fuel 1 metric ton = 7.93 barrels =1,260.72 liters Motor gasoline 8.53 barrels =1,356.16 liters 1 metric ton = Kerosene 1 metric ton = 7.73 barrels = 1,228.97 litersNaphtha 1 metric ton = 8.22 barrels = 1.306.87 liters Distillate 1 metric ton = 7.46 barrels = 1,186.04 litersResidual oil 1 metric ton = 6.66 barrels =1,058.85 liters Lubricants 1 metric ton = 7.06 barrels = 1,122.45 liters Bitumen 1 metric ton = 6.06 barrels =963.46 liters Waxes 1 metric ton = 7.87 barrels =1,251.23 liters Petroleum coke 1 metric ton = 5.51 barrels =876.02 liters Petrochemical feedstocks 1 metric ton = 7.46 barrels =1.186.04 liters Special naphtha 1 metric ton = 8.53 barrels = 1.356.16 litersMiscellaneous products 8.00 barrels =1.271.90 liters 1 metric ton =

Energy Conversions

Converting Various Energy Units to Joules

The common energy unit used in international reports of greenhouse gas emissions is the joule. A joule is the energy required to push with a force of one Newton for one meter. A terajoule (TJ) is one trillion (10^{12}) joules. A British thermal unit (Btu, the customary U.S. energy unit) is the quantity of heat required to raise the temperature of one pound of water one degree Fahrenheit at or near 39.2 Fahrenheit.

 $1 \text{ TJ} = \begin{cases} 2.388 \times 10^{11} \text{ calories} \\ 23.88 \text{ metric tons of crude oil equivalent} \\ 947.8 \text{ million Btus} \\ 277,800 \text{ kilowatt-hours} \end{cases}$

Converting Various Physical Units to Energy Units

Data on the production and consumption of fuels are first gathered in physical units. These units must be converted to their energy equivalents. The values in the following table of conversion factors can be used as default factors, if

¹ Reference: EIA (1998a)

local data are not available. See Appendix A of EIA's *Annual Energy Review 1997* (EIA 1998) for more detailed information on the energy content of various fuels.

Table Q-2: Conversion Factors to Energy Units (Heat Equivalents)

Fuel Type (Units)	Factor
Solid Fuels (Million Btu/Short ton)	
Anthracite coal	22.573
Bituminous coal	23.89
Sub-bituminous coal	17.14
Lignite	12.866
Coke	24.8
Natural Gas (Btu/Cubic foot)	1,027
Liquid Fuels (Million Btu/Barrel)	
Crude oil	5.800
Natural gas liquids and LRGs	3.777
Other liquids	5.825
Motor gasoline	5.253
Aviation gasoline	5.048
Kerosene	5.670
Jet fuel, kerosene-type	5.670
Distillate fuel	5.825
Residual oil	6.287
Naphtha for petrochemicals	5.248
Petroleum coke	6.024
Other oil for petrochemicals	5.825
Special naphthas	5.248
Lubricants	6.065
Waxes	5.537
Asphalt	6.636
Still gas	6.000
Misc. products	5.796

Note: For petroleum and natural gas, *Annual Energy Review 1997* (EIA 1998b). For coal ranks, *State Energy Data Report 1992* (EIA 1993). All values are given in higher heating values (gross calorific values).

References

EIA (1998a) *Emissions of Greenhouse Gases in the United States*, DOE/EIA-0573(97), Energy Information Administration, U.S. Department of Energy. Washington, DC. October.

EIA (1998b) Annual Energy Review, DOE/EIA-0384(97), Energy Information Administration, U.S. Department of Energy. Washington, DC. July.

EIA (1993) *State Energy Data Report 1992*, DOE/EIA-0214(93), Energy Information Administration, U.S. Department of Energy. Washington, DC. December.